Ataxin-1 Nuclear Localization and Aggregation Role in Polyglutamine-Induced Disease in SCA1 Transgenic Mice
نویسندگان
چکیده
Transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene, a polyglutamine neurodegenerative disorder, develop ataxia with ataxin-1 localized to aggregates within cerebellar Purkinje cells nuclei. To examine the importance of nuclear localization and aggregation in pathogenesis, mice expressing ataxin-1[82] with a mutated NLS were established. These mice did not develop disease, demonstrating that nuclear localization is critical for pathogenesis. In a second series of transgenic mice, ataxin-1[77] containing a deletion within the self-association region was expressed within Purkinje cells nuclei. These mice developed ataxia and Purkinje cell pathology similar to the original SCA1 mice. However, no evidence of nuclear ataxin-1 aggregates was found. Thus, although nuclear localization of ataxin-1 is necessary, nuclear aggregation of ataxin-1 is not required to initiate pathogenesis in transgenic mice.
منابع مشابه
Serine 776 of Ataxin-1 Is Critical for Polyglutamine-Induced Disease in SCA1 Transgenic Mice
Polyglutamine-induced neurodegeneration in transgenic mice carrying the spinocerebellar ataxia type 1 (SCA1) gene is modulated by subcellular distribution of ataxin-1 and by components of the protein folding/degradation machinery. Since phosphorylation is a prominent mechanism by which these processes are regulated, we examined phosphorylation of ataxin-1 and found that serine 776 (S776) was ph...
متن کاملRecovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant, polyglutamine-induced neurodegenerative disorder that results in loss of motor coordination caused primarily by a disruption of cerebellar Purkinje cell function. In this study, we developed a conditional SCA1 mouse model to examine whether stopping expression of mutant ataxin-1 alters the disease phenotype. After cessation of SCA1[...
متن کاملMutation of the E6-AP Ubiquitin Ligase Reduces Nuclear Inclusion Frequency While Accelerating Polyglutamine-Induced Pathology in SCA1 Mice
Mutant ataxin-1, the expanded polyglutamine protein causing spinocerebellar ataxia type 1 (SCA1), aggregates in ubiquitin-positive nuclear inclusions (NI) that alter proteasome distribution in affected SCA1 patient neurons. Here, we observed that ataxin-1 is degraded by the ubiquitin-proteasome pathway. While ataxin-1 [2Q] and mutant ataxin-1 [92Q] are polyubiquitinated equally well in vitro, t...
متن کاملAstroglia and Protein Aggregation Diseases
Many neurodegenerative disorders like Alzheimer’s, Parkinson’s, prion and polyglutamine diseases are caused by gain-of-function mechanisms in which the disease-causing protein accumulates in the form of insoluble protein aggregates or inclusion bodies [1,2]. Whether these aggregated proteins directly cause neurodegeneration is still controversial; however, it is widely believed that soluble for...
متن کاملdAtaxin-2 Mediates Expanded Ataxin-1-Induced Neurodegeneration in a Drosophila Model of SCA1
Spinocerebellar ataxias (SCAs) are a genetically heterogeneous group of neurodegenerative disorders sharing atrophy of the cerebellum as a common feature. SCA1 and SCA2 are two ataxias caused by expansion of polyglutamine tracts in Ataxin-1 (ATXN1) and Ataxin-2 (ATXN2), respectively, two proteins that are otherwise unrelated. Here, we use a Drosophila model of SCA1 to unveil molecular mechanism...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 95 شماره
صفحات -
تاریخ انتشار 1998